
Event collections and datasets
David Adams
November 8, 2002

Introduction
LCG POOL has a “Collections and Metadata” work package intended to support
ensembles of POOL objects. See http://lcgapp.cern.ch/project/persist/metadata. A
significant amount of related work has been done in the BNL dataset project described at
http://www.usatlas.bnl.gov/~dladams/dataset. Here we examine some of the
commonalities and differences between these models and make some proposals for
integration.

Commonalities
Both models provide means to describe a container of objects and iterate over the objects
in the container. Both are generic in that they can hold objects of any type but the major
use case for both is to hold HEP event data. When we say that a collection/dataset holds a
data object, this generally means that it holds a global identifier that can be used in
conjunction with a persistent store (e.g. POOL) to locate the object.

Both envision both explicit and implicit collection/datasets. In an explicit
collection/dataset the objects (or more precisely their identifiers) are held directly. An
implicit collection/dataset holds the objects (or a subset of the objects) held in some other
container (e.g. a file or another collection/dataset).

Features in Collection but not in Dataset

Tag data
The collection model envisions that optional tag data is associated with each object in the
collection and that queries using this data can be used to select objects. This tag data
would normally be stored in a relational database.

The dataset model does not explicitly support tag data except for the local identifiers used
to label objects within a dataset. Both models support queries based on the data in the
collection/dataset and the dataset model does allow some of the contained data to be held
in relational database.

Event headers
The collection model envisions that the data in an event is described by an event header
that holds a list of identifiers for the data objects associated with the event. The header is
itself an object and the collection holds identifiers for the included event headers.

The dataset directly holds the identifiers for the event data objects. It is allowed for the
dataset to also hold event headers. Even if these we not explicitly held, the nature of the
dataset makes it possible to construct them on demand if desired.

http://lcgapp.cern.ch/project/persist/metadata
http://www.usatlas.bnl.gov/~dladams/dataset

Features in dataset but not collection

Local identification (indexing)
A dataset is a map of data objects indexed by a local identifier that is unique in the
context of the dataset but not unique or necessarily recognizable in the context of the
persistent. The dataset provides the connection between the local identifier and the global
identifier used to locate the object.

For an event header (if they exist), the local identifier is an event ID, e.g. run and event
number. For a data object in an event, the local identifier is an event ID plus a “content
ID” that distinguishes between the different types of data in an event. For ATLAS, we
might follow the transient model and construct the content ID from the type (class ID)
and string key used in StoreGate.

In contrast, an explicit collection is simply a vector of global identifiers. For an event
collection these would be identifiers for event headers. The event ID would be included
in one of the data objects referenced by the event header (e.g. the EventInfo object). Each
data object might similarly carry its event and content ID’s.

The indexing inherent in a dataset makes it possible for a dataset to report on its content
without ever locating or opening the data objects that it holds. E.g., an event dataset can
report which events are held (i.e. for which event ID’s) and the content (list of content
ID’s) for any of these events. A consistent event dataset would have the same content for
each event and one can speak of the content of the dataset.

For explicit collections, event-specific properties such as the event ID and content could
be included in the tag database. Collective properties such as the event ID list and the
content could be stored in a collection catalog.

File association
The dataset model envisions making an association between a dataset and the set (or sets)
of files holding the data in the dataset. This information allows a job scheduler to gather
the required files or to send the job to a location where the files are easily accessible. This
information might be added to a catalog in the collection model.

Content merging
Event datasets support the merging of datasets with different content for the same events.
E.g. the jets reconstructed in one job could be merged with the tracks reconstructed in
another. More importantly, a single job could write tracks and jets to separate datasets
and then trivially create a third dataset merging the content in these two. Presumably this
is done in the explicit collection model by creating a third set of event headers.

Content Selection
The event dataset model allows for selection based on content, i.e. to restrict the content
in an existing dataset to create a new dataset. The main advantage is to reduce the number
of files required where the data is distributed over multiple files but there are also cases
where one would like to hide existing data because it is going to be replaced with new
data with the same content ID.

 2

Portability
Datasets are portable, i.e. they have a persistent representation that can be written into a
file and copied from one location to another. The current implementation uses XML. The
collection model is based on catalogs but one could presumably add a portability layer
that extracts the relevant data.

Non-event data
The dataset model allows non-event data to be included in a dataset with event data. For
example relevant conditions data might be included. Collections iterate over a single type
and do not naturally accommodate non-event data.

Other issues

Replicated object identity
An object may be replicated, i.e. copied from one physical container (e.g. file) to another.
Does the object retain its identity in the new container or is it assigned a new identity? If
so, then references to the object can be satisfied with either container and do not have to
be updated to refer to the new copy. If not, then the new identifier can carry an identifier
of the new container to add in locating the object. The existing collection model assumes
the identity changes while the dataset model assumes it retains the old identity. Although
either choice can be made to work, it would be good to resolve this issue soon.

Object references
Do references to another object use a global identifier as assumed in the previous section?
Or are they allowed to use a local identifier and depend on context (collection/dataset) for
resolution?

Collection Issues

Implicit collection tags
Should implicit collections include tags?

Separating tags and collections
Should tags be separated from collections and indexed with event ID’s so that a selection
can be done on one collection and then applied to another?

Integration
Here we consider some strategies for integrating the event collection and dataset models.
Event collections are already part of the LCG project.

Ignore datasets
One option is to ignore all the new capabilities in datasets and stick with the existing
collection model.

 3

 4

Absorb datasets
Many or all of the features of the dataset model are desirable. The collection model could
be expanded to absorb them as discussed above.

Datasets as implicit collections
The collection model is mostly devoted to explicit collection while many of the dataset
features are relevant to explicit collections. It is natural to expand the current narrow
range of implicit collections to encompass all or most of the range of dataset varieties.

This might include adding a thin dataset layer over the explicit event collection so that
collection/dataset users have a common interface for accessing data from implicit and
explicit containers.

	Event collections and datasets
	Introduction
	Commonalities
	Features in Collection but not in Dataset
	Tag data
	Event headers

	Features in dataset but not collection
	Local identification (indexing)
	File association
	Content merging
	Content Selection
	Portability
	Non-event data

	Other issues
	Replicated object identity
	Object references

	Collection Issues
	Implicit collection tags
	Separating tags and collections

	Integration
	Ignore datasets
	Absorb datasets
	Datasets as implicit collections

